Matings of cubic polynomials with a fixed critical point. Part II: <i>α</i>-symmetry of limbs

نویسندگان

چکیده

In this article we provide a combinatorial sufficient (and conjecturally, necessary) condition (called $\alpha$-symmetry) for the mating of two postcritically finite polynomials in $\mathcal{S}_1$ to be obstructed. To do this, study rotation sets associated parameter limbs connectedness locus $\mathcal{S}_1$, which allows us determine when there exist ray classes formal contain closed loop. We give proof necessity $\alpha$-symmetry particular subset maps $\mathcal{S}_1$. Many examples are given illustrate results paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton maps as matings of cubic polynomials

In this paper we prove existence and uniqueness of matings of a large class of renormalizable cubic polynomials with one fixed critical point and the other cubic polynomial having two fixed critical points. The resulting mating is a Newton map. Our result is the first part towards a conjecture by Tan Lei, stating that all (cubic) Newton maps can be described as matings or captures.

متن کامل

A Family of Cubic Rational Maps and Matings of Cubic Polynomials

Introduction 1. Preliminaries 2. Statement of the Results and Examples 3. General Analysis on Branched Coverings and Matings 4. Proof of the Results: First Part 5. Proof of the Results: Second Part Appendix: Matings Seen in Parameter Space and Some Numerical Observations Acknowledgements References We study a family of cubic branched coverings and matings of cubic polynomials of the form g?? f,...

متن کامل

The iteration of cubic polynomials Part II: patterns and parapatterns

2. PAYrERNS ........................... 235 Topological preliminaries .................... 235 C o n s t r u c t i n g the t ree o f p a t t e r n s . . . . . . . . . . . . . . . . 237 T he po ten t i a l func t ion hR . . . . . . . . . . . . . . . . . . . . 239 Cri t ical g raphs , annul i and a r g u m e n t s . . . . . . . . . . . . . 240 T h e t ree o f real p a t t e r n s . . . . . . . . ...

متن کامل

Almost Multi-Cubic Mappings and a Fixed Point Application

The aim of this paper is to introduce $n$-variables mappings which are cubic in each variable and to apply a fixed point theorem for the Hyers-Ulam stability of such mapping in non-Archimedean normed spaces. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes are presented.

متن کامل

Branner-hubbard-lavaurs Deformations for Real Cubic Polynomials with a Parabolic Fixed Point

In this article, we study what we call the Branner-HubbardLavaurs deformation of real cubic polynomials with a parabolic fixed point of multiplier one. It turns out that the existence of non-trivial deformations corresponds to the oscillation of stretching rays and discontinuity of the wring operation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Difference Equations and Applications

سال: 2023

ISSN: ['1026-7042', '1563-5120', '1023-6198']

DOI: https://doi.org/10.1080/10236198.2023.2188973